Using encrypted genotypes and phenotypes for collaborative genomic analyses to maintain data confidentiality

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To adhere to and capitalize on the benefits of the FAIR (findable, accessible, interoperable, and reusable) principles in agricultural genome-to-phenome studies, it is crucial to address privacy and intellectual property issues that prevent sharing and reuse of data in research and industry. Direct sharing of genotype and phenotype data is often prohibited due to intellectual property and privacy concerns. Thus, there is a pressing need for encryption methods that obscure confidential aspects of the data, without affecting the outcomes of certain statistical analyses. A homomorphic encryption method for genotypes and phenotypes (HEGP) has been proposed for single-marker regression in genome-wide association studies (GWAS) using linear mixed models with Gaussian errors. This methodology permits frequentist likelihood-based parameter estimation and inference. In this paper, we extend HEGP to broader applications in genome-to-phenome analyses. We show that HEGP is suited to commonly used linear mixed models for genetic analyses of quantitative traits including genomic best linear unbiased prediction (GBLUP) and ridge-regression best linear unbiased prediction (RR-BLUP), as well as Bayesian variable selection methods (e.g. those in Bayesian Alphabet), for genetic parameter estimation, genomic prediction, and GWAS. By advancing the capabilities of HEGP, we offer researchers and industry professionals a secure and efficient approach for collaborative genomic analyses while preserving data confidentiality.

Cite

CITATION STYLE

APA

Zhao, T., Wang, F., Mott, R., Dekkers, J., & Cheng, H. (2024). Using encrypted genotypes and phenotypes for collaborative genomic analyses to maintain data confidentiality. Genetics, 226(3). https://doi.org/10.1093/genetics/iyad210

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free