Microbiome-derived metabolites are important for the microbiome-gut-brain axis and the discovery of new disease treatments. d-Alanine (d-Ala) is found in many animals as a potential co-agonist of the N-methyl-d-aspartate receptors (NMDAR), receptors widely used in the nervous and endocrine systems. The gut microbiome, diet and putative endogenous synthesis are the potential sources of d-Ala in animals, although there is no direct evidence to show the distribution and racemization of gut-absorbed l-/d-Ala with regards to host-microbe interactions in mammals. In this work, we utilized germ-free mice to control the interference from microbiota and isotopically labeled l-/d-Ala to track their biodistribution and racemization in vivo. Results showed time-dependent biodistribution of gut-absorbed d-Ala, particularly accumulation of gut-absorbed d-Ala in pancreatic tissues, brain, and pituitary. No endogenous synthesis of d-Ala via racemization was observed in germ-free mice. The sources of d-Ala in mice were revealed as microbiota and diet, but not endogenous racemization. This work indicates the importance of further investigating the in vivo biological functions of gut-microbiome derived d-Ala, particularly on NMDAR-related activities, for d-Ala as a potential signaling molecules in the microbiome-gut-brain axis.
CITATION STYLE
Qiu, T. (Autumn), Lee, C. J., Huang, C., Lee, D. K., Rubakhin, S. S., Romanova, E. V., & Sweedler, J. V. (2023). Biodistribution and racemization of gut-absorbed l/d-alanine in germ-free mice. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-05209-y
Mendeley helps you to discover research relevant for your work.