Sunlight intensity based global positioning system for near-surface underwater sensors

9Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points. © 2012 by the authors.

Cite

CITATION STYLE

APA

Gómez, J. V., Sandnes, F. E., & Fernóndez, B. (2012). Sunlight intensity based global positioning system for near-surface underwater sensors. Sensors, 12(2), 1930–1949. https://doi.org/10.3390/s120201930

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free