Functionalized Macrocycles in Supramolecular Organocatalysis

34Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Supramolecular organocatalysis has emerged as a novel research field in the context of homogeneous catalysis. In particular, the use of functionalized macrocycles as supramolecular catalysts is highly promising, as these systems are oftentimes easily accessible and offer distinct advantages in catalysis. Macrocyclic catalysts can provide defined binding pockets, such as hydrophobic cavities, and can thus create a reaction microenvironment for catalysis. In addition, macrocycles can offer a preorganized arrangement of functional groups, such as binding sites or catalytically active groups, thus enabling a defined and possibly multivalent binding and activation of substrates. The aim of this Minireview is to provide an overview of recent advances in the area of supramolecular organocatalysis based on functionalized macrocycles (including cyclodextrins, calixarenes, and resorcinarenes), with a focus on those examples where certain catalytically active groups (such as hydrogen bond donors/acceptors, Brønsted acid or base groups, or nucleophilic units) are present in or have been installed on the macrocycles.

Cite

CITATION STYLE

APA

Kauerhof, D., & Niemeyer, J. (2020, May 1). Functionalized Macrocycles in Supramolecular Organocatalysis. ChemPlusChem. Wiley-VCH Verlag. https://doi.org/10.1002/cplu.202000152

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free