Biosynthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid from 5-hydroperoxyeicosatetraenoic acid in the murine macrophage

29Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a metabolite of arachidonic acid shown to possess important biological activities within different cell types. In the neutrophil, a specific NADP+-dependent dehydrogenase utilizes 5-lipoxygenase-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5(S)-HETE) as the required substrate. In the present study, 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HpETE), rather than 5-HETE, was found to be the biosynthetic precursor of 5-oxo-ETE in the murine macrophage. The macrophage was not able to convert 5-HETE into 5-oxo-ETE even when preincubated with phorbol ester or with other lipid hydroperoxides. The factor responsible for the conversion of 5-HpETE into 5-oxo-ETE was found predominantly in the cytosolic fraction of the macrophage, with an approximate molecular weight of 50,000-60,000, as assessed by size exclusion chromatography. Formation of 5-oxo-ETE was rapid and the catalytic protein was found to have an apparent Km of 5.3 μM for the eicosanoid. Furthermore, the protein could efficiently utilize 5(R,S)-HpETE as substrate and was heat and protease labile. This novel pathway of 5-oxo-ETE biosynthesis in the murine macrophage was consistent with reduction of a 5-hydroperoxy group to an intermediate alkoxy radical that could be subsequently oxidized to the 5-oxo product. Such a mechanism would enable racemic 5-HpETE, derived from free radical oxidation of arachidonic acid, to be efficiently converted into this potent chemotactic eicosanoid.

Cite

CITATION STYLE

APA

Zarini, S., & Murphy, R. C. (2003). Biosynthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid from 5-hydroperoxyeicosatetraenoic acid in the murine macrophage. Journal of Biological Chemistry, 278(13), 11190–11196. https://doi.org/10.1074/jbc.M208496200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free