Quantifying cerebral contributions to pain beyond nociception

164Citations
Citations of this article
298Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cerebral processes contribute to pain beyond the level of nociceptive input and mediate psychological and behavioural influences. However, cerebral contributions beyond nociception are not yet well characterized, leading to a predominant focus on nociception when studying pain and developing interventions. Here we use functional magnetic resonance imaging combined with machine learning to develop a multivariate pattern signature - termed the stimulus intensity independent pain signature-1 (SIIPS1) - that predicts pain above and beyond nociceptive input in four training data sets (Studies 1-4, N=137). The SIIPS1 includes patterns of activity in nucleus accumbens, lateral prefrontal and parahippocampal cortices, and other regions. In cross-validated analyses of Studies 1-4 and in two independent test data sets (Studies 5-6, N=46), SIIPS1 responses explain variation in trial-by-trial pain ratings not captured by a previous fMRI-based marker for nociceptive pain. In addition, SIIPS1 responses mediate the pain-modulating effects of three psychological manipulations of expectations and perceived control. The SIIPS1 provides an extensible characterization of cerebral contributions to pain and specific brain targets for interventions.

Cite

CITATION STYLE

APA

Woo, C. W., Schmidt, L., Krishnan, A., Jepma, M., Roy, M., Lindquist, M. A., … Wager, T. D. (2017). Quantifying cerebral contributions to pain beyond nociception. Nature Communications, 8. https://doi.org/10.1038/ncomms14211

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free