Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbor

  • Saputra A
  • Primadasa Y
N/ACitations
Citations of this article
283Readers
Mendeley users who have this article in their library.

Abstract

Tidak stabilnya kelulusan mahasiswa program studi Sistem Informasi pada STMIK Bina Nusantara JayaLubuklinggau menjadi tugas yang berat bagi Program Studi. Bertambahnya mahasiswa tiap tahunnya menyebabkan penumpukan data mahasiswa. Prediksi ketepatan kelulusan mahasiswa dirancang untuk mendukung prodi untuk membimbing mahasiswa agar kelulusan tepat waktu. Dengan mengetahui prediksi status kelulusan mahasiswa berjalannya perkuliahan, maka dari itu prodi di bantu pembimbing akademik dapat memberi perhatian khusus terhadap mahasiswa yang di prediksi tidak lulus tepat waktu (terlambat) sehingga mahasiswa tersebut dapat memperbaiki indeks prestasinya tiap semester agar dapat lulus tepat waktu. Dalam penelitian ini untuk memprediksi kelulusan mahasiswa menggunakan algoritma K-Nearest Neighbor. K-Nearest Neighbor merupakan metode klasifikasi, dimana kelas yang paling banyak muncul (mayoritas) yang akan menjadi kelas hasil klasifikasi. Penelitian ini mengambil sample data mahasiswa semester V STMIK Bina Nusantara Jaya Lubuklinggau, menggunakan 9 data training dan 1 data testing. Dengan menggunakan k=5 yang diterapkan menggunakan metode K-Nearest Neighbor untuk prediksi kelulusan mahasiswa.

Cite

CITATION STYLE

APA

Saputra, A. Y., & Primadasa, Y. (2018). Penerapan Teknik Klasifikasi Untuk Prediksi Kelulusan Mahasiswa Menggunakan Algoritma K-Nearest Neighbor. Techno.Com, 17(4), 395–403. https://doi.org/10.33633/tc.v17i4.1864

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free