Machine learning algorithms based on convolutional neural networks (CNNs) have recently been explored in a myriad of object detection applications. Nonetheless, many devices with limited computation resources and strict power consumption constraints are not suitable to run such algorithms designed for high-performance computers. Hence, a novel smartphone-based architecture intended for portable and constrained systems is designed and implemented to run CNN-based object recognition in real time and with high efficiency. The system is designed and optimised by leveraging the integration of the best of its kind from the state-of-the-art machine learning platforms including OpenCV, TensorFlow Lite, and Qualcomm Snapdragon informed by empirical testing and evaluation of each candidate framework in a comparable scenario with a high demanding neural network. The final system has been prototyped combining the strengths from these frameworks and led to a new machine learning-based object recognition execution environment embedded in a smartphone with advantageous performance compared with the previous frameworks.
CITATION STYLE
Martinez-Alpiste, I., Golcarenarenji, G., Wang, Q., & Alcaraz-Calero, J. M. (2022). Smartphone-based real-time object recognition architecture for portable and constrained systems. Journal of Real-Time Image Processing, 19(1), 103–115. https://doi.org/10.1007/s11554-021-01164-1
Mendeley helps you to discover research relevant for your work.