XPXP: Improving polygenic prediction by cross-population and cross-phenotype analysis

16Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Motivation: As increasing sample sizes from genome-wide association studies (GWASs), polygenic risk scores (PRSs) have shown great potential in personalized medicine with disease risk prediction, prevention and treatment. However, the PRS constructed using European samples becomes less accurate when it is applied to individuals from non-European populations. It is an urgent task to improve the accuracy of PRSs in under-represented populations, such as African populations and East Asian populations. Results: In this article, we propose a cross-population and cross-phenotype (XPXP) method for construction of PRSs in under-represented populations. XPXP can construct accurate PRSs by leveraging biobank-scale datasets in European populations and multiple GWASs of genetically correlated phenotypes. XPXP also allows to incorporate population-specific and phenotype-specific effects, and thus further improves the accuracy of PRS. Through comprehensive simulation studies and real data analysis, we demonstrated that our XPXP outperformed existing PRS approaches. We showed that the height PRSs constructed by XPXP achieved 9% and 18% improvement over the runner-up method in terms of predicted R2 in East Asian and African populations, respectively. We also showed that XPXP substantially improved the stratification ability in identifying individuals at high genetic risk of type 2 diabetes.

Cite

CITATION STYLE

APA

Xiao, J., Cai, M., Hu, X., Wan, X., Chen, G., & Yang, C. (2022). XPXP: Improving polygenic prediction by cross-population and cross-phenotype analysis. Bioinformatics, 38(7), 1947–1955. https://doi.org/10.1093/bioinformatics/btac029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free