Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice

151Citations
Citations of this article
470Readers
Mendeley users who have this article in their library.

Abstract

Macroscopic (millimeter scale) functional clustering is a hallmark characteristic of motor cortex spatial organization in awake behaving mammals; however, almost no information is known about the functional micro-organization (∼100 μm scale). Here, we optically recorded intracellular calcium transients of layer 2/3 neurons with cellular resolution over ∼200-μm-diameter fields in the forelimb motor cortex of mobile, head-restrained mice during two distinct movements (running and grooming). We showed that the temporal correlation between neurons was statistically larger the closer the neurons were to each other. We further explored this correlation by using two separate methods to spatially segment the neurons within each imaging field: K-means clustering and correlations between single neuron activity and mouse movements. The two methods segmented the neurons similarly and led to the conclusion that the origin of the inverse relationship between correlation and distance seen statistically was twofold: clusters of highly temporally correlated neurons were often spatially distinct from one another, and (even when the clusters were spatially intermingled) within the clusters, the more correlated the neurons were to each other, the shorter the distance between them. Our results represent a direct observation of functional clustering within the microcircuitry of the awake mouse motor cortex. Copyright © 2009 Society for Neuroscience.

Cite

CITATION STYLE

APA

Dombeck, D. A., Graziano, M. S., & Tank, D. W. (2009). Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. Journal of Neuroscience, 29(44), 13751–13760. https://doi.org/10.1523/JNEUROSCI.2985-09.2009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free