Upscaling evapotranspiration with parsimonious models in a North Carolina vineyard

9Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Water stress can positively or negatively impact grape yield and yield quality, and there is a need for wine growers to accurately regulate water use. In a four-year study (2010–2013), energy balance fluxes were measured with an eddy-covariance (EC) system in a North Carolina vineyard (Vitis vinifera cv. Chardonnay), and evapotranspiration (ET) and the Crop Water Stress Index (CWSI) calculated. A multiple linear regression model was developed to upscale ET using air temperature (Ta), vapor pressure deficit (VPD), and Landsat-derived Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI). Daily ET reached values of up to 7.7 mm day −1 , and the annual ET was 752 ± 59 mm, as measured with the EC system. The grapevine CWSI was between 0.53–0.85, which indicated moderate water stress levels. Median vineyard EVI was between 0.22 and 0.72, and the EVI range (max–min) within the vineyard was 0.18. The empirical models explained 75%–84% of the variation in ET, and all parameters had a positive linear relationship to ET. The Root Mean Square Error (RMSE) was 0.52–0.62 mm. This study presents easily applicable approaches to analyzing water dynamics and ET. This may help wine growers to cost-effectively quantify water use in vineyards.

Cite

CITATION STYLE

APA

Dold, C., Heitman, J., Giese, G., Howard, A., Havlin, J., & Sauer, T. (2019). Upscaling evapotranspiration with parsimonious models in a North Carolina vineyard. Agronomy, 9(3). https://doi.org/10.3390/agronomy9030152

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free