Abstract
Synaptic transmission between dorsal root afferents and neurons in the superficial laminae of the spinal dorsal horn (laminae I-III) was examined by intracellular recording in a transverse slice preparation of rat spinal cord. Brief high-frequency electrical stimulation (300 pulses at 100 Hz) of primary afferent fibers produced a long-term potentiation (LTP) or a long-term depression (LTD) of fast (monosynaptic and polysynaptic) EPSPs in a high proportion of dorsal horn neurons. Both the AMPA and the NMDA receptor-mediated components of synaptic transmission at the primary afferent synapses with neurons in the dorsal horn can exhibit LTP and LTD of the synaptic responses. In normal and neonatally capsaicin-treated rats, the induction of LTP requires the activation of NMDA receptor-gated conductances. The induction of LTP or LTD, however, was not abolished in the presence of bicuculline, a GABAA receptor antagonist. The results demonstrate that distinct and long-lasting modulation in synaptic efficiency can be induced at primary afferent synapses with neurons in the superficial laminae of spinal dorsal horn by high-frequency stimulation of dorsal root afferents and that these changes may be physiologically relevant for transmission and integration of sensory information, including pain. Copyright © 1993 Society for Neuroscience.
Author supplied keywords
Cite
CITATION STYLE
Randić, M., Jiang, M. C., & Cerne, R. (1993). Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. Journal of Neuroscience, 13(12), 5228–5241. https://doi.org/10.1523/jneurosci.13-12-05228.1993
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.