Advancement in medical science is emerging day by day, and application of engineering technology in the field of medical science plays a very important role. In this paper, a novel method to monitor the health condition of an individual is developed. The proposed system uses piezoelectric devices to operate a health monitoring gadget with antenna that is suitable to operate for the piezoelectric based power source. The present day health monitoring gadgets require battery replacement or need to be charged. These would be a problem for the user when the device runs out of the charge. In order to overcome these challenges, the concept of piezoelectricity is applied to charge the gadget. The gadget consists of a transmitter, which is a wearable device, which will be worn by the patient, whose health condition has to be monitored. The receiver unit is placed in the nearest hospital, which will receive the physical conditions of the patient and, monitoring of the health condition is done. Piezoelectric based charging system is used to drive the proposed gadget. The transmission and reception is accomplished by GSM. In order to achieve better performance, microstrip antenna is used for transmission and reception. The simulation of the proposed system is done using Multisim, and simulation results are presented. The piezoelectric simulation is done using MATLAB and also the simulation of micro strip antenna is presented. Here the microstrip antennas will be stimulated for frequency range of 2-3 GHz and 5-6 GHz (preferably 2.2 and 2.5 GHz), using HFSS and MATLAB. The piezoelectric beam is simulated and the voltage produced for the deflection is noted. It was found that for deflection of 33um, a voltage of 100V is produced.The various performance parameters of the antenna, such as impedance, VSWR, reflection coefficient, return loss are obtained and presented.
CITATION STYLE
Saraereh, O. A., & Al Saraira, A. A. (2016). Piezoelectric driven antenna system for health monitoring gadgets. International Journal of Engineering and Technology, 8(5), 2206–2220. https://doi.org/10.21817/ijet/2016/v8i5/160805004
Mendeley helps you to discover research relevant for your work.