Abstract
Biomimetic strategies are useful for designing potent vaccines. Decorating a nanoparticulate adjuvant with cell membrane fragments as the antigen-presenting source exemplifies, such as a promising strategy. For translation, a standardizable, consistent, and scalable approach for coating nanoadjuvant with the cell membrane is important. Here a turbulent mixing and self-assembly method called flash nanocomplexation (FNC) for producing cell membrane-coated nanovaccines in a scalable manner is demonstrated. The broad applicability of this FNC technique compared with bulk-sonication by using ten different core materials and multiple cell membrane types is shown. FNC-produced biomimetic nanoparticles have promising colloidal stability and narrow particle polydispersity, indicating an equal or more homogeneous coating compared to the bulk-sonication method. The potency of a nanovaccine comprised of B16-F10 cancer cell membrane decorating mesoporous silica nanoparticles loaded with the adjuvant CpG is then demonstrated. The FNC-fabricated nanovaccines when combined with anti-CTLA-4 show potency in lymph node targeting, DC antigen presentation, and T cell immune activation, leading to prophylactic and therapeutic efficacy in a melanoma mouse model. This study advances the design of a biomimetic nanovaccine enabled by a robust and versatile nanomanufacturing technique.
Author supplied keywords
Cite
CITATION STYLE
Hu, H., Yang, C., Zhang, F., Li, M., Tu, Z., Mu, L., … Leong, K. W. (2021). A Versatile and Robust Platform for the Scalable Manufacture of Biomimetic Nanovaccines. Advanced Science, 8(15). https://doi.org/10.1002/advs.202002020
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.