Abstract
Trimethylamine-N-oxide (TMAO) is abundant in marine fish. Formaldehyde synthesis by TMAO demethylation during storage markedly deteriorates fish meat. In the present work, we cloned the extremely aspartic acid-rich proteins from skeletal muscle of a commercially important species, walleye pollack, in the course of molecular identification of trimethylamine-N-oxide demethylase (TMAOase). One of the cDNAs, designated as aspolinl, encodes an extremely aspartic acid-rich protein of 228 amino acids which is converted to the TMAOase after processing between Ala42 and Asp43. Mature aspolin1/TMAOase protein contains 179 Asp in 186 total amino acids. The other cDNA, designated as aspolin2, has a common nucleotide sequence with aspolin1 in the 5' part and encodes a protein which has an additional Asp polymer and a C-terminal cysteine-rich region. The amino acid sequence of the C-terminal cysteine-rich region of aspolin2 is highly homologous to the mammalian histidine-rich Ca2+-binding protein. Aspolin1/TMAOase and aspolin2 mRNA was most abundant in the skeletal muscle. A lower level of the mRNA was also detected in kidney, heart, spleen, and brain. Synthetic Asp polymer showed marked TMAOase activity in the presence of Fe2+, whereas a monomer and oligomers did not. Purified TMAOase protein bound to Fe2+ with low affinity, which may be responsible for the catalytic activity. Poly aspartic acid-Fe2+ complex generated after death would be involved in formaldehyde synthesis by the demethylation of TMAO during the storage of fish meat.
Cite
CITATION STYLE
Takeuchi, K., Hatanaka, A., Kimura, M., Seki, N., Kimura, I., Yamada, S., & Yamashita, S. (2003). Aspolin, a Novel Extremely Aspartic Acid-rich Protein in Fish Muscle, Promotes Iron-mediated Demethylation of Trimethylamine-N-oxide. Journal of Biological Chemistry, 278(48), 47416–47422. https://doi.org/10.1074/jbc.M309415200
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.