Modeling biogenic and anthropogenic secondary organic aerosol in China

159Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

Abstract

A revised Community Multi-scale Air Quality (CMAQ) model with updated secondary organic aerosol (SOA) yields and a more detailed description of SOA formation from isoprene oxidation was applied to study the spatial and temporal distribution of SOA in China in the entire year of 2013. Predicted organic carbon (OC), elemental carbon and volatile organic compounds agreed favorably with observations at several urban areas, although the high OC concentrations in wintertime in Beijing were under-predicted. Predicted summer SOA was generally higher (10-15 μg m-3) due to large contributions of isoprene (country average, 61 %), although the relative importance varies in different regions. Winter SOA was slightly lower and was mostly due to emissions of alkane and aromatic compounds (51 %). Contributions of monoterpene SOA was relatively constant (8-10 %). Overall, biogenic SOA accounted for approximately 75 % of total SOA in summer, 50-60 % in autumn and spring, and 24 % in winter. The Sichuan Basin had the highest predicted SOA concentrations in the country in all seasons, with hourly concentrations up to 50 μg m-3. Approximately half of the SOA in all seasons was due to the traditional equilibrium partitioning of semivolatile components followed by oligomerization, while the remaining SOA was mainly due to reactive surface uptake of isoprene epoxide (5-14 %), glyoxal (14-25 %) and methylglyoxal (23-28 %). Sensitivity analyses showed that formation of SOA from biogenic emissions was significantly enhanced due to anthropogenic emissions. Removing all anthropogenic emissions while keeping the biogenic emissions unchanged led to total SOA concentrations of less than 1 μg m-3, which suggests that manmade emissions facilitated biogenic SOA formation and controlling anthropogenic emissions would result in reduction of both anthropogenic and biogenic SOA.

Cite

CITATION STYLE

APA

Hu, J., Wang, P., Ying, Q., Zhang, H., Chen, J., Ge, X., … Zhang, Y. (2017). Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmospheric Chemistry and Physics, 17(1), 77–92. https://doi.org/10.5194/acp-17-77-2017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free