Methionine residues in α/β-type small, acid-soluble spore proteins (SASP) of Bacillus species were readily oxidized to methionine sulfoxide in vitro by t-butyl hydroperoxide (tBHP) or hydrogen peroxide (H2O2). These oxidized α/β-type SASP no longer bound to DNA effectively, but DNA binding protected α/β-type SASP against methionine oxidation by peroxides in vitro. Incubation of an oxidized α/β-type SASP with peptidyl methionine sulfoxide reductase (MsrA), which can reduce methionine sulfoxide residues back to methionine, restored the α/β-type SASP's ability to bind to DNA. Both tBHP and H2O2 caused some oxidation of the two methionine residues of an α/β- type SASP (SspC) in spores of Bacillus subtilis, although one methionine which is highly conserved in α/β-type SASP was only oxidized to a small degree. However, much more methionine sulfoxide was generated by peroxide treatment of spores carrying a mutant form of SspC which has a lower affinity for DNA. MsrA activity was present in wild-type B. subtilis spores. However, msrA mutant spores were no more sensitive to H2O2 than were wild-type spores. The major mechanism operating for dealing with oxidative damage to α/β-type SASP in spores is DNA binding, which protects the protein's methionine residues from oxidation both in vitro and in vivo. This may be important in vivo since α/β-type SASP containing oxidized methionine residues no longer bind DNA well and α/β-type SASP-DNA binding is essential for long-term spore survival.
CITATION STYLE
Hayes, C. S., Illades-Aguiar, B., Casillas-Martinez, L., & Setlow, P. (1998). In vitro and in vivo oxidation of methionine residues in small, acid- soluble spore proteins from Bacillus species. Journal of Bacteriology, 180(10), 2694–2700. https://doi.org/10.1128/jb.180.10.2694-2700.1998
Mendeley helps you to discover research relevant for your work.