Abstract
In this paper, we prove a new version of the Birkhoff ergodic theorem (BET) for random variables depending on a parameter (alias integrands). This involves variational convergences, namely epigraphical, hypographical and uniform convergence and requires a suitable definition of the conditional expectation of integrands. We also have to establish the measurability of the epigraphical lower and upper limits with respect to the σ-field of invariant subsets. From the main result, applications to uniform versions of the BET to sequences of random sets and to the strong consistency of estimators are briefly derived.
Author supplied keywords
Cite
CITATION STYLE
Choirat, C., Hess, C., & Seri, R. (2003). A functional version of the Birkhoff ergodic theorem for a normal integrand: A variational approach. Annals of Probability, 31(1), 63–92. https://doi.org/10.1214/aop/1046294304
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.