Staphylococcus aureus ClpX localizes at the division septum and impacts transcription of genes involved in cell division, T7-secretion, and SaPI5-excision

15Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In all living cells, molecular chaperones are essential for facilitating folding and unfolding of proteins. ClpX is a highly conserved ATP-dependent chaperone that besides functioning as a classical chaperone can associate with ClpP to form the ClpXP protease. To investigate the relative impact of the ClpXP protease and the ClpX chaperone in cell physiology of the important pathogenic bacterium Staphylococcus aureus, we assessed the transcriptional changes induced by inactivating only ClpXP, or by completely deleting ClpX. This analysis revealed that ClpX has a profound impact on S. aureus cell physiology that is mediated primarily via ClpXP-dependent pathways. As an example, ClpX impacts expression of virulence genes entirely via ClpXP-dependent mechanisms. Furthermore, ClpX controls a high number of genes and sRNAs via pathways involving both ClpXP protease and ClpX chaperone activities; an interesting example being genes promoting excision and replication of the pathogenicity island SaPI5. Independently of ClpP, ClpX, impacts transcription of only a restricted number of genes involved in peptidoglycan synthesis, cell division, and type seven secretion. Finally, we demonstrate that ClpX localizes in single foci in close proximity to the division septum lending support to the idea that ClpX plays a role in S. aureus cell division.

Cite

CITATION STYLE

APA

Jensen, C., Fosberg, M. J., Thalsø-Madsen, I., Bæk, K. T., & Frees, D. (2019). Staphylococcus aureus ClpX localizes at the division septum and impacts transcription of genes involved in cell division, T7-secretion, and SaPI5-excision. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52823-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free