Ion transport and limited currents in supporting electrolytes and ionic liquids

12Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Supporting electrolytes contain inert dissolved salts to increase the conductivity, to change microenvironments near the electrodes and to assist in electrochemical reactions. This combined experimental and computational study examines the impact of supporting salts on the ion transport and related limited currents in electrochemical cells. A physical model that describes the multi-ion transport in liquid electrolytes and the resulting concentration gradients is presented. This model and its parameterization are evaluated by the measured limited current of the copper deposition in a CuSO4 electrolyte under a gradually increasing amount of Na2SO4 that acts as a supporting salt. A computational sensibility analysis of the transport model reveals that the shared conductance between the ions lowers the limited currents with larger supporting salt concentrations. When the supporting salt supplies most of the conductance, the electric-field-driven transport of the electrochemically active ions becomes negligible so that the limited current drops to the diffusion-limited current that is described by Fick’s first law. The transition from diluted supporting electrolyte to the case of ionic liquids is elucidated with the transport model, highlighting the different physical transport mechanisms in a non-conducting (polar) and a conducting (ionic) solvent.

Cite

CITATION STYLE

APA

Schalenbach, M., Durmus, Y. E., Tempel, H., Kungl, H., & Eichel, R. A. (2022). Ion transport and limited currents in supporting electrolytes and ionic liquids. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10183-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free