Abstract
The catalytic properties of unsupported iron oxides, specifically magnetite (Fe3O4), were investigated for the reverse water-gas shift (RWGS) reaction at temperatures between 723 K and 773 K and atmospheric pressure. This catalyst exhibited a fast catalytic CO formation rate (35.1 mmol h−1 gcat.−1), high turnover frequency (0.180 s−1), high CO selectivity (> 99%), and high stability (753 K, 45000 cm3h−1gcat.−1) under a 1:1 H2 to CO2 ratio. Reaction rates over the Fe3O4 catalyst displayed a strong dependence on H2 partial pressure (reaction order of ~0.8) and a weaker dependence on CO2 partial pressure (reaction order of 0.33) under an equimolar flow of both reactants. X-ray powder diffraction patterns and XPS spectra reveal that the bulk composition and structure of the post-reaction catalyst was formed mostly of metallic Fe and Fe3C, while the surface contained Fe2+, Fe3+, metallic Fe and Fe3C. Catalyst tests on pure Fe3C (iron carbide) suggest that Fe3C is not an effective catalyst for this reaction at the conditions investigated. Gas-switching experiments (CO2 or H2) indicated that a redox mechanism is the predominant reaction pathway.
Author supplied keywords
Cite
CITATION STYLE
Chou, C. Y., Loiland, J. A., & Lobo, R. F. (2019). Reverse water-gas shift iron catalyst derived from magnetite. Catalysts, 9(9). https://doi.org/10.3390/catal9090773
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.