Fluctuations in local shear-fault energy produce unique and dominating strengthening in metastable complex concentrated alloys

39Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Local chemical short-range ordering (SRO) and spatial fluctuations of planar fault energy are important features of multi-element and metastable complex concentrated alloys (CCAs). Arising from them, dislocations in such alloys are distinctively wavy in both static and migrating conditions; yet, such effects on strength have remained unknown. In this work, molecular dynamics simulations are used to show that the wavy configurations of dislocations and their jumpy motion in a prototypic CCA of NiCoCr are due to the local fluctuations of the energy of SRO shear-faulting that accompanies dislocation motion, with the dislocation getting pinned at sites of hard atomic motifs (HAMs) associated with high local shear-fault energies. Unlike the global averaged shear-fault energy which in general will subdue on successive dislocation passes, the local fluctuations in the fault energy always remain in a CCA, thus offering a strength contribution that is unique in such alloys. Analysis of the magnitude of this form of dislocation resistance shows that this is dominating over contributions due to elastic misfit of alloying elements and is in good agreement with strengths predicted from molecular dynamics simulations and experiments. This work has unfolded the physical basis of strength in CCAs, which is important for the development of these alloys into useful structural materials.

Cite

CITATION STYLE

APA

Li, W., Lyu, S., Chen, Y., & Ngan, A. H. W. (2023). Fluctuations in local shear-fault energy produce unique and dominating strengthening in metastable complex concentrated alloys. Proceedings of the National Academy of Sciences of the United States of America, 120(12). https://doi.org/10.1073/pnas.2209188120

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free