Abstract
Objectives: One of the greatest hurdles in tracheal tissue engineering is insufficient vascularization, which leads to delayed mucosal regeneration, inflammation, and restenosis. This study investigated whether a prevascularized segmental tracheal substitute using platysma can enhance tracheal mucosal regeneration. Methods: Three-dimensional (3D) printed scaffolds with (group M) or without (group S) Matrigel coating were implanted under the feeding vessels of the platysma in New Zealand White rabbits (n = 3) to induce vascularization. After 1 or 2 weeks, tracheal defects were created and vascularized scaffolds with feeders of the platysma were transplanted as rotational flaps. As controls, scaffolds with or without Matrigel coating was transplanted into a tracheal defect without prevascularization. Airway patency and epithelization were examined using a rigid bronchoscope every 2 weeks. Surviving animals were euthanized at 24 weeks, and microcomputed tomography and histological evaluation were performed. Results: Animals with 2 weeks of prevascularization showed longer survival than animals with 0 or 1 weeks of prevascularization regardless of the Matrigel coating. Wider airway patency was observed in group M than group S. Group M showed migration of epithelium over the scaffold from 4 weeks after transplantation and complete coverage with epithelium at 12 weeks, whereas group S showed migration of the epithelium from 14 weeks and incomplete coverage with epithelium even at 24 weeks. Conclusion: This two-step method, utilizing the platysma as an in vivo bioreactor, may be a promising approach to achieve long-term survival and enhanced luminal patency. Matrigel coating on the scaffold had a synergistic effect on epithelial regeneration. Level of Evidence: NA Laryngoscope, 131:1732–1740, 2021.
Author supplied keywords
Cite
CITATION STYLE
Lee, M., Choi, J. S., Eom, M. R., Jeong, E. J., Kim, J., Park, S. A., & Kwon, S. K. (2021). Prevascularized Tracheal Scaffolds Using the Platysma Flap for Enhanced Tracheal Regeneration. Laryngoscope, 131(8), 1732–1740. https://doi.org/10.1002/lary.29178
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.