The radiolytic behavior and mechanism of calixarene crown ether under γ-irradiation

6Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Bis(2-propyloxy)calix[4]crown-6 (BPC6) is an effective separation agent for cesium removing from spent nuclear fuel. The study on radiolytic behavior of BPC6 itself under γ-irradiation was required for evaluating its feasibility of practical application. It was found that BPC6 exhibited excellent radiation stability at dose less than 100 kGy. However, the isopropyl groups in BPC6 underwent oxidation and dealkylation to form carbonyl groups and phenolic hydroxyl groups at dose above 300 kGy, respectively. When the dose was more than 1000 kGy, the ring opening of crown ether structure of BPC6 resulted in the formation of phenolic hydroxyl groups as well. The formation of radiolytic products containing phenolic hydroxyl groups during the irradiation of BPC was confirmed by using FeCl3 as a probe. Combining with the radiolytic behavior of two model chemicals (1-isopropoxybenzene and benzo-18-crown-6 ether), the radiolytic behavior and mechanism of BPC6 under γ-irradiation was testified further. © 2013 The Author(s).

Cite

CITATION STYLE

APA

Ao, Y. Y., Peng, J., Zhang, Y. W., Yuan, L. Y., Yu, C. H., Li, J. Q., & Zhai, M. L. (2013). The radiolytic behavior and mechanism of calixarene crown ether under γ-irradiation. Chinese Science Bulletin, 58(14), 1663–1669. https://doi.org/10.1007/s11434-013-5667-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free