Potentiation of high voltage-activated calcium channels by 4-Aminopyridine depends on subunit composition

15Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

4-Aminopyridine (4-AP, fampridine) is used clinically to improve neuromuscular function in patients with multiple sclerosis, spinal cord injury, and myasthenia gravis. 4-AP can increase neuromuscular and synaptic transmission by directly stimulating high voltage-activated (HVA) Ca2+ channels independent of its blocking effect on voltage-activated K+ channels. Here we provide new evidence that the potentiating effect of 4-AP on HVA Ca2+ channels depends on the specific combination of voltage-activated calcium channel α1 (Cavα1) and voltage-activated calcium channel β (Cavβ) subunits. Among the four Cavβ subunits examined, Cavβ3 was the most significant subunit involved in the 4-AP-induced potentiation of both L-type and N-type currents. Of particular note, 4-AP at micromolar concentrations selectively potentiated L-type currents reconstituted with Cav1.2, α2δ1, and Cavβ3. In contrast, 4-AP potentiated N-type currents only at much higher concentrations and had little effect on P/Q-type currents. In a phrenic nerve-diaphragm preparation, blocking L-type Ca2+ channels eliminated the potentiating effect of low concentrations of 4-AP on end-plate potentials. Furthermore, 4-AP enhanced the physical interaction of Cav1.2 and Cav2.2 subunits to Cavβ3 and also increased their trafficking to the plasma membrane. Site-directed mutagenesis identified specific regions in the guanylate kinase, HOOK, and C-terminus domains of the Cavβ3 subunit crucial to the ability of 4-AP to potentiate L-type and N-type currents. Our findings indicate that 4-AP potentiates HVA Ca2+ channels by enhancing reciprocal Cav1.2-Cavβ3 and Cav2.2-Cavβ3 interactions. The therapeutic effect of 4-AP on neuromuscular function is probably mediated by its actions on Cavβ3-containing L-type Ca2+ channels.

Cite

CITATION STYLE

APA

Li, L., Li, D. P., Chen, S. R., Chen, J., Hu, H., & Pan, H. L. (2014). Potentiation of high voltage-activated calcium channels by 4-Aminopyridine depends on subunit composition. Molecular Pharmacology, 86(6), 760–772. https://doi.org/10.1124/mol.114.095505

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free