The transmembrane replacement H7N9-VLP vaccine displays high levels of protection in mice

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

The incidence of infections caused by the H7N9 subtype of the influenza virus has expanded rapidly in China in recent decades, generating massive economic loss and posing a significant threat to public health. In the absence of specialized antiviral treatments or long-term effective preventative vaccinations, it is critical to constantly enhance vaccines and create effective antiviral drugs to prevent the recurrence of pandemics. In the present study, a transmembrane-substituted (TM) virus-like particle (VLP)-based vaccine was created by replacing the transmembrane region of hemagglutinin (HA) protein with the transmembrane region of the H3 HA protein and then used to immunize BALB/c mice. Sera and T cells were collected from the immunized mice to evaluate the passive immune effects. Our results showed that naïve mice achieved 80–100% protection against homologous and heterologous H7N9 influenza strains after receiving passive serum immunization; the protective effect of the TM VLPs was more evident than that of the wild-type HA VLPs. In contrast, mice immunized with passive T cells achieved only 20 to 80% protection against homologous or heterologous strains. Our findings significantly contribute to understanding the control of the H7N9 virus and the development of a vaccine.

Cite

CITATION STYLE

APA

Qin, J., Hu, B., Song, Q., Wang, R., Zhang, X., Yu, Y., & Wang, J. H. (2022). The transmembrane replacement H7N9-VLP vaccine displays high levels of protection in mice. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1003714

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free