Background: Treatment for glioblastoma (GBM) remains an unmet need in medicine. Novel therapies that address GBM complexity and heterogeneity in particular are warranted. To this end, we target 4 tumor-associated receptors at a time that span virtually all of the GBM microenvironment including bulk tumor cells, infiltrating tumor cells, neovasculature, and tumor-infiltrating cells with one pharmaceutical agent delivering a cytotoxic load. Methods: We engineered multivalent ligand-based vector proteins termed QUAD with an ability to bind to 4 of the following GBM-associated receptors: IL-13RA2, EphA2, EphA3, and EphB2. We conjugated QUAD with a modified bacterial toxin PE38QQR and tested it in vitro and in vivo. Results: The QUAD variants preserved functional characteristics of the respective ligands for the 4 receptors. The QUAD 3.0 variant conjugate was highly cytotoxic to GBM cells, but it was nontoxic in mice, and the conjugate exhibited strong antitumor effect in a dog with spontaneous GBM. Conclusion: The QUAD addresses, to a large extent, the issues of intra- and intertumoral heterogeneity and, at the same time, it targets several pathophysiologically important tumor compartments in GBM through multiple receptors overexpressed in tumors allowing for what we call "molecular resection."QUAD-based targeted agents warrant further pre- and clinical development.
CITATION STYLE
Sharma, P., Sonawane, P., Herpai, D., D’Agostino, R., Rossmeisl, J., Tatter, S., & Debinski, W. (2020). Multireceptor targeting of glioblastoma. Neuro-Oncology Advances, 2(1). https://doi.org/10.1093/noajnl/vdaa107
Mendeley helps you to discover research relevant for your work.