This paper studies the effect of adding lanthanides with negative association energy, such as holmium and erbium, to ceria nanoparticles doped with positive association energy lanthanides, such as neodymiumand samarium. That is what we called mixed doped ceria nanoparticles (MDC NPs). In MDC NPs of grain size range around 6 nm, it is proved qualitatively that the conversion rate from Ce4+ to Ce3+ is reduced, compared to ceria doped only with positive association energy lanthanides. There are many pieces of evidence which confirm the obtained conclusion. These indications are an increase in the allowed direct band gap which is calculated fromthe absorbance dispersionmeasurements, a decrease in the emitted fluorescence intensity, and an increase in the size of nanoparticles, which ismeasured using both techniques: transmission electron microscope (TEM) and X-ray diffractometer (XRD). That gives a novel conclusion that there are some trivalent dopants, such as holmium and erbium, which can suppress Ce3+ ionization states in ceria and consequently act as scavengers for active O-vacancies in MDC. This promising concept can develop applications which depend on the defects in ceria such as biomedicine, electronic devices, and gas sensors.
CITATION STYLE
Shehata, N., Meehan, K., Hudait, M., Jain, N., & Gaballah, S. (2014). Study of optical and structural characteristics of ceria nanoparticles doped with negative and positive association lanthanide elements. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/401498
Mendeley helps you to discover research relevant for your work.