Abstract
An important goal of materials science is the development of interfaces that integrate the functions of living cells and materials. Nature has given us plenty of ideas on how to build composites and organized structure (Heuer et al. 1992, Lowenstam, Weiner, 1989). The structure of a given biomaterial is crucial, when determining the cell response, and respectively the variants for its biomedical applications. The combined unique properties offered by organic and inorganic constituents within a single material on a nanoscale level make the nanocomposites attractive for the next generation of biocompatible materials. In this case, the composite materials of the type detonation nanodiamonds/polymers possessed spatial organization of components with new structural features and physical properties, as well as complex functions due to the strong synergistic effects between the nanoparticles and polymers. Recently, there is a growing interest in the synthesis of composite functional materials with new physico-chemical properties, involving integration of inorganic nanomaterials into a polymer matrix (Shenderova et al., 2002, Dolmatov, 2007, Borjanovic, 2000). Numerous siloxan-based materials, including polymerized hexamethyldisiloxane (PPHMDS) are developed. PPHMDS was easy to prepare by a well established technology of plasma polymerization (Vasilev et al., 2010, Radeva et al., 1993). PPHMDS has a long history of exploitation in a variety of applications, because it is non-toxic, transparent, with a very low surface tension, flexible, and it neither dissolves nor swells in a cell culture medium (Min-Hsien, 2009). On the
Cite
CITATION STYLE
Pramatarova, L., Radeva, E., Pecheva, E., Hikov, T., Krasteva, N., Dimitrova, R., … Altankov, G. (2011). The Advantages of Polymer Composites with Detonation Nanodiamond Particles for Medical Applications. In On Biomimetics. InTech. https://doi.org/10.5772/22903
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.