An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand

70Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fabric anisotropy has a significant influence on the mechanical behavior of sand. An anisotropic plasticity model incorporating fabric evolution is formulated in this study. Information on the overall stress–strain relationship and micromechanical fabric states from DEM numerical tests is used in the development of the constitutive model, overcoming the difficulties of fabric measurement in physical tests. The framework of the model and its formulations for fabric evolution, plasticity, and dilatancy enables it to capture the strength, shear modulus, and dilatancy of sand under both monotonic and cyclic loading. The model is validated against DEM numerical tests and physical laboratory tests on samples with different initial fabric, showing good agreement between the simulation and test results for the anisotropic stress–strain behavior of sand. The use of DEM test data also allows for the validation of the model on the micromechanical fabric level, showing that the model can reproduce the fabric evolution and its influence on key constitutive features reasonably well. The model is further applied to analyze the liquefaction behavior of sand, exhibiting the significant influence of fabric anisotropy on both liquefaction resistance and postliquefaction shear deformation.

Cite

CITATION STYLE

APA

Wang, R., Cao, W., Xue, L., & Zhang, J. M. (2021). An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand. Acta Geotechnica, 16(1), 43–65. https://doi.org/10.1007/s11440-020-00984-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free