Geothermal energy: Delivering on the global potential

46Citations
Citations of this article
164Readers
Mendeley users who have this article in their library.

Abstract

Geothermal energy has been harnessed for recreational uses for millennia, but only for electricity generation for a little over a century. Although geothermal is unique amongst renewables for its baseload and renewable heat provision capabilities, uptake continues to lag far behind that of solar and wind. This is mainly attributable to (i) uncertainties over resource availability in poorly-explored reservoirs and (ii) the concentration of full-lifetime costs into early-stage capital expenditure (capex). Recent advances in reservoir characterization techniques are beginning to narrow the bounds of exploration uncertainty, both by improving estimates of reservoir geometry and properties, and by providing pre-drilling estimates of temperature at depth. Advances in drilling technologies and management have potential to significantly lower initial capex, while operating expenditure is being further reduced by more effective reservoir management-supported by robust models-and increasingly efficient energy conversion systems (flash, binary and combined-heat-and-power). Advances in characterization and modelling are also improving management of shallow low-enthalpy resources that can only be exploited using heat-pump technology. Taken together with increased public appreciation of the benefits of geothermal, the technology is finally ready to take its place as a mainstream renewable technology, exploited far beyond its traditional confines in the world's volcanic regions.

Cite

CITATION STYLE

APA

Younger, P. L. (2015). Geothermal energy: Delivering on the global potential. Energies. MDPI AG. https://doi.org/10.3390/en81011737

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free