Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

232Citations
Citations of this article
273Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. © 2014 Macmillan Publishers Limited. All rights reserved.

Cite

CITATION STYLE

APA

Kuse, Y., Ogawa, K., Tsuruma, K., Shimazawa, M., & Hara, H. (2014). Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Scientific Reports, 4. https://doi.org/10.1038/srep05223

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free