Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence time and increased drug bioavailability. Methods: Floating microsphere were prepared by emulsion solvent diffusion method, using hydroxylpropyl methylcellulose (HPMC), ethyl cellulose (EC), Eudragit S 100 polymer in varying ratios. Ethanol/dichloromethane blend was used as solvent in a ratio of 1:1. The floating microspheres were evaluated for flow properties, particle size, incorporation efficiency, as well as in-vitro floatability and drug release. The shape and surface morphology of the microspheres were characterised by optical and scanning electron microscopy. Result: The floating microspheres showed particle size, buoyancy, drug entrapment efficiency and yield in the ranges of 251 - 387 μm, 74.6 - 90.6 %, and 72.6 - 83.5 %, and 45.5 - 82.0 %, respectively. Maximum drug release after 20 h was 47.1, 55.7, 69.4 and 81.3 % for formulations F1, F2, F3 and F4, respectively. Scanning electron micrographs indicate pores both on the surface and interior of the microspheres. Conclusion: The developed curcumin microsphere system is a promising floating drug delivery system for oral sustained administration of curcumin. © Pharmacotherapy Group.
CITATION STYLE
Kumar, K., & Rai, A. K. (2012). Development and evaluation of floating microspheres of curcumin. Tropical Journal of Pharmaceutical Research, 11(5), 713–719. https://doi.org/10.4314/tjpr.v11i5.3
Mendeley helps you to discover research relevant for your work.