When driven by nonequilibrium fluctuations, particle systems may display phase transitions and physical behavior with no equilibrium counterpart. We study a two-dimensional particle model initially proposed to describe driven non-Brownian suspensions undergoing nonequilibrium absorbing phase transitions. We show that when the transition occurs at large density, the dynamics produces long-range crystalline order. In the ordered phase, long-range translational order is observed because equipartition of energy is lacking, phonons are suppressed, and density fluctuations are hyperuniform. Our study offers an explicit microscopic model where nonequilibrium violations of the Mermin-Wagner theorem stabilize crystalline order in two dimensions.
CITATION STYLE
Galliano, L., Cates, M. E., & Berthier, L. (2023). Two-Dimensional Crystals far from Equilibrium. Physical Review Letters, 131(4). https://doi.org/10.1103/PhysRevLett.131.047101
Mendeley helps you to discover research relevant for your work.