Divergent cytotoxic and metabolically stimulative functions of sigma-2 receptors: Structure-Activity Relationships of 6-Acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79) Derivatives

22Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sigma-2 receptors, recently identified as TMEM97, have been implicated in cancer and neurodegenerative disease. Structurally distinct sigma-2 receptor ligands induce cell death in tumor cells, linking sigma-2 receptors to apoptotic pathways. Recently, we reported that sigma-2 receptors can also stimulate glycolytic hallmarks, effects consistent with a prosurvival function and upregulation in cancer cells. Both apoptotic and metabolically stimulative effects were observed with compounds related to the canonical sigma-2 antagonist SN79. Here we investigate a series of 6-substituted SN79 analogs to assess the structural determinants governing these divergent effects. Substitutions on the benzoxazolone ring of the core SN79 structure resulted in high-affinity sigma-2 receptor ligands (Ki 5 0.56–17.9 nM), with replacement of the heterocyclic oxygen by N-methyl (producing N-methylbenzimidazolones) generally decreasing sigma-1 affinity and a sulfur substitution (producing benzothiazolones) imparting high affinity at both subtypes, lowering subtype selectivity. Substitution at the 6-position with COCH3, NO2, NH2, or F resulted in ligands that were not cytotoxic. Five of these ligands induced an increase in metabolic activity, as measured by increased reduction of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetra-zolium bromide) in human SK-N-SH neuroblastoma cells, further supporting a role for sigma-2 receptors in metabolism. Substitution with 6-isothiocyanate resulted in ligands that were sigma-2 selective and that irreversibly bound to the sigma-2 receptor, but not to the sigma-1 receptor. These ligands induced cell death upon both acute and continuous treatment (EC50 5 7.6–32.8 mM), suggesting that irreversible receptor binding plays a role in cytotoxicity. These ligands will be useful for further study of these divergent roles of sigma-2 receptors.

Cite

CITATION STYLE

APA

Nicholson, H. E., Alsharif, W. F., Comeau, A. B., Mesangeau, C., Intagliata, S., Mottinelli, M., … Bowen, W. D. (2019). Divergent cytotoxic and metabolically stimulative functions of sigma-2 receptors: Structure-Activity Relationships of 6-Acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79) Derivatives. Journal of Pharmacology and Experimental Therapeutics, 368(2), 272–281. https://doi.org/10.1124/jpet.118.253484

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free