Determination of optimal initial weights of an artificial neural network by Using the harmony search algorithm: Application to breakwater armor stones

57Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

In this study, an artificial neural network (ANN) model is developed to predict the stability number of breakwater armor stones based on the experimental data reported by Van der Meer in 1988. The harmony search (HS) algorithm is used to determine the near-global optimal initial weights in the training of the model. The stratified sampling is used to sample the training data. A total of 25 HS-ANN hybrid models are tested with different combinations of HS algorithm parameters. The HS-ANN models are compared with the conventional ANN model, which uses a Monte Carlo simulation to determine the initial weights. Each model is run 50 times and the statistical analyses are conducted for the model results. The present models using stratified sampling are shown to be more accurate than those of previous studies. The statistical analyses for the model results show that the HS-ANN model with proper values of HS algorithm parameters can give much better and more stable prediction than the conventional ANN model.

Cite

CITATION STYLE

APA

Lee, A., Geem, Z. W., & Suh, K. D. (2016). Determination of optimal initial weights of an artificial neural network by Using the harmony search algorithm: Application to breakwater armor stones. Applied Sciences (Switzerland), 6(6). https://doi.org/10.3390/app6060164

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free