Abstract
Red mud desulfurization is an environmentally friendly desulfurization technology. After desulfurization, the acidity of red mud slurry continues to be neutralized for processing new red mud, and no waste acid is generated. At present, there is a lack of research on desulfurization intensification in external fields, etc. To further enhance red mud desulfurization, this paper used an SO2 detector, X-ray fluorescence spectrometer (XRF), and scanning electron microscope (SEM) to compare and analyze red mud desulfurization under the action of ball mill and ultrasonic external fields. In this study, experiments were conducted using a bubbling and stirring reactor device. The results showed that the suitable red mud slurry concentration was 10 g/L. The raw red mud desulfurization (without external field condition) could reach 100% absorption in the first 25 min, and the desulfurization rate dropped to 81.3% at 80 min. The mechanism of red mud desulfurization was investigated by X-ray diffractometer (XRD), XRF, and infrared spectroscopy. Under the action of the external field of the ball mill, the red mud particles could be refined to prolong the desulfurization time. The red mud after ball milling could reach 100% absorption within 33 min. Under the thermal effect of the ultrasound, 100% absorption could only be achieved within 23 min. From the desulfurization effect and XRF results, it was found that the ball mill was more suitable for promoting red mud desulfurization in the bubbling and stirring reactor.
Author supplied keywords
Cite
CITATION STYLE
Li, X., Liu, Y., & Zhang, T. (2022). Comparison of the Effects of Ultrasonic and Ball Milling on Red Mud Desulfurization. Metals, 12(11). https://doi.org/10.3390/met12111887
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.