Scalable electrochromic nanopixels using plasmonics

171Citations
Citations of this article
199Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Plasmonic metasurfaces are a promising route for flat panel display applications due to their full color gamut and high spatial resolution. However, this plasmonic coloration cannot be readily tuned and requires expensive lithographic techniques. Here, we present scalable electrically driven color-changing metasurfaces constructed using a bottom-up solution process that controls the crucial plasmonic gaps and fills them with an active medium. Electrochromic nanoparticles are coated onto a metallic mirror, providing the smallest-area active plasmonic pixels to date. These nanopixels show strong scattering colors and are electrically tunable across >100-nm wavelength ranges. Their bistable behavior (with persistence times exceeding hundreds of seconds) and ultralow energy consumption (9 fJ per pixel) offer vivid, uniform, nonfading color that can be tuned at high refresh rates (>50 Hz) and optical contrast (>50%). These dynamics scale from the single nanoparticle level to multicentimeter scale films in subwavelength thickness devices, which are a hundredfold thinner than current displays. ^copy; 2019 The Authors.

Cite

CITATION STYLE

APA

Peng, J., Jeong, H. H., Lin, Q., Cormier, S., Liang, H. L., De Volder, M. F. L., … Baumberg, J. J. (2019). Scalable electrochromic nanopixels using plasmonics. Science Advances, 5(5). https://doi.org/10.1126/sciadv.aaw2205

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free