Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive

27Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Histone post-translational modifications, and specific combinations they create, mediate a wide range of nuclear events. However, the mechanistic bases for recognition of these combinations have not been elucidated. Here, we characterize crosstalk between H3T3 and H3T6 phosphorylation, occurring in mitosis, and H3K4me3, a mark associated with active transcription. We detail the molecular mechanisms by which H3T3ph/K4me3/T6ph switches mediate activities of H3K4me3-binding proteins, including those containing plant homeodomain (PHD) and double Tudor reader domains. Our results derived from nuclear magnetic resonance chemical shift perturbation analysis, orthogonal binding assays and cell fluorescence microscopy studies reveal a strong anti-correlation between histone H3T3/T6 phosphorylation and retention of PHD finger proteins in chromatin during mitosis. Together, our findings uncover the mechanistic rules of chromatin engagement for H3K4me3-specific readers during cell division.

Cite

CITATION STYLE

APA

Gatchalian, J., Gallardo, C. M., Shinsky, S. A., Ospina, R. R., Liendo, A. M., Krajewski, K., … Kutateladze, T. G. (2016). Chromatin condensation and recruitment of PHD finger proteins to histone H3K4me3 are mutually exclusive. Nucleic Acids Research, 44(13), 6102–6112. https://doi.org/10.1093/nar/gkw193

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free