Kr+ ion dose dependence of the magnetic properties of MnGa films and the fabrication of planar-patterned MnGa films by the local ion irradiation technique were reviewed. The magnetization and perpendicular anisotropy of the MnGa vanished at an ion dose of 1 × 1014 ions/cm2 due to the phase change of the MnGa from ferromagnetic L10 to paramagnetic A1 phase. The average switching field Hsw of the planar-patterned MnGa increased with decreasing the bit size, implying low bit edge damage in the patterned MnGa, whereas a rather large switching field distribution (SFD) of 25% was confirmed for a bit size of ~40 nm. Time resolved magneto-optical Kerr effect measurements revealed that as-prepared MnGa exhibits an effective anisotropy field Hkeff = 20 kOe, its distribution ∆Hkeff = 200 Oe, and Gilbert damping α = 0.008. The ion-irradiated MnGa films exhibited larger Hkeff = 22–23 kOe than that of the MnGa before the ion dose. Thus, ion irradiation does not decrease the perpendicular anisotropy, which suggests a small bit edge in the patterned MnGa. ∆Hkeff increased from 0.2 kOe to 3 kOe, whereas the length of disorder in the film ξ decreased from 10 nm to 3 nm by ion irradiation.
CITATION STYLE
Kato, T., Oshima, D., & Iwata, S. (2019, January 1). Ion irradiation for planar patterning of magnetic materials. Crystals. MDPI AG. https://doi.org/10.3390/cryst9010027
Mendeley helps you to discover research relevant for your work.