Abstract
Motivation: The only algorithm guaranteed to find the optimal local alignment is the Smith-Waterman. It is also one of the slowest due to the number of computations required for the search. To speed up the algorithm, Single-Instruction Multiple-Data (SIMD) instructions have been used to parallelize the algorithm at the instruction level. Results: A faster implementation of the Smith-Waterman algorithm is presented. This algorithm achieved 2-8 times performance improvement over other SIMD based Smith-Waterman implementations. On a 2.0 GHz Xeon Core 2 Duo processor, speeds of >3.0 billion cell updates/s were achieved. © 2007 Oxford University Press.
Cite
CITATION STYLE
Farrar, M. (2007). Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics, 23(2), 156–161. https://doi.org/10.1093/bioinformatics/btl582
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.