Depositional architecture of sand-attached and sand-detached channel-lobe transition zones on an exhumed stepped slope mapped over a 2500 km2 area

60Citations
Citations of this article
92Readers
Mendeley users who have this article in their library.

Abstract

The geomorphology and seismic stratigraphy of deep-water clastic systems from slope valleys through channel-levee systems to basin-floor fans have been observed and described in modern and ancient sub surface examples around the world. However, the distribution of sedimentary facies, grain size, and small-scale architectural elements remains poorly constrained. Extensive exposures (>2500 km2) of four stacked deep-water composite sequences have been mapped from heterolithic channel-levee systems on the slope to sand-rich basin-floor deposits. The data set from Units C-F of the Fort Brown Formation in the Permian Laingsburg depocenter of South Africa permits a unique opportunity to document and compare their depositional architecture at a high resolution for tens of kilometers downdip. Isopach thickness maps indicate that compensational stacking across multiple stratigraphic scales occurs on the basin floor, whereas preferred axial pathways were present on the slope, leading to subvertical stacking patterns. Units C and D are sand-attached systems; slope valley systems are mapped to pass transitionally downslope through leveeconfined channels to lobe complexes over distances of >30 km. The slope valley fills of Units E and F, however, are separated from their downdip sand-rich lobe complexes by a thin, sand-poor tract several kilometers in length and are termed sand detached. Locally, this sand-poor tract is characterized by a distinctive facies association of thin-bedded turbidites with numerous scours mantled with rip-up clasts, and a top surface that includes megaflutes and remobilized sediments. This assemblage is interpreted to indicate a widespread area of sand bypass. This unique data set provides an exploration- scale insight and understanding of how different segments of a prograding slope evolved over time in terms of gradient, physiography, and hence the degree to which sand was stored or bypassed to the basin floor, and the evolution from sand-attached to sand-detached systems. The development of sand-detached systems suggests that a steeper gradient formed, possibly related to developing underlying structure, that led to the development of a stepped slope profile. The study highlights that updip stratigraphic trapping at reservoir scale can occur with minor bathymetric changes.

Cite

CITATION STYLE

APA

Van der Merwe, W. C., Hodgson, D. M., Brunt, R. L., & Flint, S. S. (2014). Depositional architecture of sand-attached and sand-detached channel-lobe transition zones on an exhumed stepped slope mapped over a 2500 km2 area. Geosphere, 10(6), 1076–1093. https://doi.org/10.1130/GES01035.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free