Abstract
The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba 0.5Sr0.5Co0.8Fe0.2O 3-δ (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e g symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an eg occupancy close to unity, with high covalency of transition metal-oxygen bonds.
Cite
CITATION STYLE
Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 334(6061), 1383–1385. https://doi.org/10.1126/science.1212858
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.