A facile approach to tune the electrical and thermal properties of graphene aerogels by including bulk MoS2

29Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Graphene aerogels (GAs) have attracted extensive interest in diverse fields, owing to their ultrahigh surface area, low density and decent electrical conductivity. However, the undesirable thermal conductivity of GAs may limit their applications in energy storage devices. Here, we report a facile hydrothermal method to modulate both the electrical and thermal properties of GAs by including bulk molybdenum disulfide (MoS2). It was found that MoS2 can help to reduce the size of graphene sheets and improve their dispersion, leading to the uniform porous micro-structure of GAs. The electrical measurement showed that the electrical conductivity of GAs could be decreased by 87% by adding 0.132 Vol % of MoS2. On the contrary, the thermal conductivity of GAs could be increased by ~51% by including 0.2 vol % of MoS2. The quantitative investigation demonstrated that the effective medium theories (EMTs) could be applied to predict the thermal conductivity of composite GAs. Our findings indicated that the electrical and thermal properties of GAs can be tuned for the applications in various fields.

Cite

CITATION STYLE

APA

Gong, F., Liu, X., Yang, Y., Xia, D., Wang, W., Duong, H. M., … Wu, M. (2017). A facile approach to tune the electrical and thermal properties of graphene aerogels by including bulk MoS2. Nanomaterials, 7(12). https://doi.org/10.3390/nano7120420

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free