Extracellular vesicles derived from Lactobacillus plantarum increase BDNF expression in cultured hippocampal neurons and produce antidepressant-like effects in mice

128Citations
Citations of this article
142Readers
Mendeley users who have this article in their library.

Abstract

Gut microbiota play a role in regulating mental disorders, but the mechanism by which gut microbiota regulate brain function remains unclear. Gram negative and positive gut bacteria release membrane-derived extracellular vesicles (EVs), which function in microbiota-host intercellular communication. In the present study, we investigated whether Lactobacillus plantarum derived EVs (L-EVs) could have a role in regulating neuronal function and stress-induced depressive-like behaviors. HT22 cells treated with the stress hormone glucocorticoid (GC; corticosterone) had reduced expression of Bdnf and Sirt1, whereas L-EV treatment reversed GC-induced decreased expression of Bdnf and Sirt1. The siRNA-mediated knockdown of Sirt1 in HT22 cells decreased Bdnf4, a splicing variant of Bdnf, and Creb expression, suggesting that Sirt1 plays a role in L-EV-induced increase of BDNF and CREB expression. Mice exposed to restraint for 2-h daily for 14 days (CRST) exhibited depressive-like behaviors, and these CRST-treated mice had reduced expression of Bdnf and Nt4/5 in the hippocampus. In contrast, L-EV injection prior to each restraint treatment blocked the reduced expression of Bdnf and Nt4/5, and stress-induced depressive-like behaviors. Furthermore, L-EV treatment in CRST-treated mice also rescued the reduced expression of Bdnf, and blocked stress-induced depressive-like behaviors. These results suggest that Lactobacillus derived EVs can change the expression of neurotropic factors in the hippocampus and afford antidepressant-like effects in mice with stress-induced depression.

Cite

CITATION STYLE

APA

Choi, J., Kim, Y. K., & Han, P. L. (2019). Extracellular vesicles derived from Lactobacillus plantarum increase BDNF expression in cultured hippocampal neurons and produce antidepressant-like effects in mice. Experimental Neurobiology, 28(2), 158–171. https://doi.org/10.5607/en.2019.28.2.158

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free