Abstract
Biochar application to legume-based mixed cropping systems may enhance soil microbial diversity and nitrogen (N)-cycling function. This study was conducted to elucidate the effect of biochar application on soil microbial diversity and N-cycling function with a particular focus on legume species. Therefore, we performed a pot experiment consisting of three legume species intercropped with maize: cowpea, velvet bean, and common bean. In addition, one of three fertilizers was applied to each crop: biochar made of chicken manure (CM), a chemical fertilizer, or no fertilizer. Amplicon sequencing for the prokaryotic community and functional prediction with Tax4Fun2 were conducted. Under the CM, Simpson’s diversity index was higher in soils with common beans than those in other legume treatments. On the other hand, N-cycling genes for ammonia oxidation and nitrite reductase (NO-forming) were more abundant in velvet bean/maize treatment, and this is possibly due to the increased abundance of Thaumarchaeota (6.7%), Chloroflexi (12%), and Planctomycetes (11%). Cowpea/maize treatment had the lowest prokaryotes abundances among legume treatments. Our results suggest that the choice of legume species is important for soil microbial diversity and N-cycling functions in CM applied mixed cropping systems.
Author supplied keywords
Cite
CITATION STYLE
Kimura, A., Uchida, Y., & Madegwa, Y. M. (2022). Legume Species Alter the Effect of Biochar Application on Microbial Diversity and Functions in the Mixed Cropping System—Based on a Pot Experiment. Agriculture (Switzerland), 12(10). https://doi.org/10.3390/agriculture12101548
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.