Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver

30Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

Translation depends on messenger RNA (mRNA)-specific initiation, elongation, and termination rates. While translation elongation is well studied in bacteria and yeast, less is known in higher eukaryotes. Here we combined ribosome and transfer RNA (tRNA) profiling to investigate the relations between translation elongation rates, (aminoacyl-) tRNA levels, and codon usage in mammals. We modeled codon-specific ribosome dwell times from ribosome profiling, considering codon pair interactions between ribosome sites. In mouse liver, the model revealed site- and codon-specific dwell times that differed from those in yeast, as well as pairs of adjacent codons in the P and A site that markedly slow down or speed up elongation. While translation efficiencies vary across diurnal time and feeding regimen, codon dwell times were highly stable and conserved in human. Measured tRNA levels correlated with codon usage and several tRNAs showed reduced aminoacylation, which was conserved in fasted mice. Finally, we uncovered that the longest codon dwell times could be explained by aminoacylation levels or high codon usage relative to tRNA abundance.

Cite

CITATION STYLE

APA

Gobet, C., Weger, B. D., Marquis, J., Martin, E., Neelagandan, N., Gachon, F., & Naef, F. (2020). Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver. Proceedings of the National Academy of Sciences of the United States of America, 117(17), 9630–9641. https://doi.org/10.1073/pnas.1918145117

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free