Introduction: In planning of radiosurgical therapy is crucial the precision in drawing target bearing and in demarcation to the risk structures. Shape and location of the tumor before the procedure can be previewed via 3D printing. 3D printing helps in deciding which modality of irradiation is the safest therapy for patient. It helps the surgeon to decide the way of radiotherapy (e.g. Linac treatment, Gamma knife, Cyberknife or proton beam irradiation). Material and Methods: Planning of stereotactic radiosurgery operation was performed by CT and MRI images. Files CT slices have, after the merger of CT and MRI images transferred to the virtual planning system. Subjectivity of manual plotting that makes neurosurgeon using a 3D model helps to visualize and optimize treatment. Specifically, 3D visualizations and 3D printing was performed by the software to segment data. We have created a 3D model of the tumor with visible anatomical structures of the brain. 3D printing technology we used software TomoCon from TatraMed and corresponding 3D printer. Conclusion: 3D printing increases the exactness of focusing on the planning procedure, determine the effective therapeutic dose, it affects the calculation of the lowest dose in risk structure and effectiveness of radiation treatment in order to preserve the highest quality of life after surgery.
CITATION STYLE
Šramka, M., & Ružický, E. (2016). Possibilities in 3D Printing by Radiosurgical Operations. Journal of Biosciences and Medicines, 04(12), 18–22. https://doi.org/10.4236/jbm.2016.412003
Mendeley helps you to discover research relevant for your work.