Bi-objective optimal active and reactive power flow management in grid-connected AC/DC hybrid microgrids using metaheuristic-PSO

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In the context of evolving energy needs and environmental concerns, efficient management of distributed energy resources within microgrids has gained prominence. This paper addresses the optimization of power flow management in a hybrid AC/DC microgrid through an energy management system driven by particle swarm optimization. Unlike traditional approaches that focus solely on active power distribution, our energy management system optimizes both active and reactive power allocation among sources. By leveraging 24-hour-ahead forecasting data encompassing load predictions, tariff rates and weather conditions, our strategy ensures an economically and environmentally optimized microgrid operation. Our proposed energy management system has dual objectives: minimizing costs and reducing greenhouse gas emissions. Through optimized operation of polluting sources and efficient utilization of the energy storage system, our approach achieved significant cost savings of ∼15% compared with the genetic algorithm counterpart. This was largely attributed to the streamlined operation of the gas turbine system, which reduced fuel consumption and associated expenses. Moreover, particle swarm optimization maintained the efficiency of the gas turbine by operating at ∼80% of its nominal power, effectively lowering greenhouse gas emissions. The effectiveness of our proposed strategy is validated through simulations conducted using the MATLAB® software environment.

Cite

CITATION STYLE

APA

Charadi, S., Chakir, H. E., Redouane, A., Hasnaoui, A. E., & Et-Taoussi, M. (2023). Bi-objective optimal active and reactive power flow management in grid-connected AC/DC hybrid microgrids using metaheuristic-PSO. Clean Energy, 7(6), 1356–1380. https://doi.org/10.1093/ce/zkad081

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free