Chemically synthesized nanostructure-initiator mass spectrometry (NIMS) probes derivatized with tetrasaccharides were used to study the reactivity of representative Clostridium thermocellum β-glucosidase, endoglucanases, and cellobiohydrolase. Diagnostic patterns for reactions of these different classes of enzymes were observed. Results show sequential removal of glucose by the β-glucosidase and a progressive increase in specificity of reaction from endoglucanases to cellobiohydrolase. Time-dependent reactions of these polysaccharide-selective enzymes were modeled by numerical integration, which provides a quantitative basis to make functional distinctions among a continuum of naturally evolved catalytic properties. Consequently, our method, which combines automated protein translation with high-sensitivity and time-dependent detection of multiple products, provides a new approach to annotate glycoside hydrolase phylogenetic trees with functional measurements.
CITATION STYLE
Deng, K., Takasuka, T. E., Bianchetti, C. M., Bergeman, L. F., Adams, P. D., Northen, T. R., & Fox, B. G. (2015). Use of nanostructure-initiator mass spectrometry to deduce selectivity of reaction in glycoside hydrolases. Frontiers in Bioengineering and Biotechnology, 3(OCT). https://doi.org/10.3389/fbioe.2015.00165
Mendeley helps you to discover research relevant for your work.